Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF
نویسندگان
چکیده
This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn. Keywords—Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.
منابع مشابه
Vibration suppression analysis for laminated composite beams embedded actuating magnetostrictive layers
This paper presents the analysis of vibration control of a laminated composite beam that including magnetostrictive layers. The formulation of problem is presented based on the shear deformation beam theory. For vibration suppression, the velocity feedback control with constant gain distributed is considered. Navier's method is applied to analyze the solution of vibration suppression of laminat...
متن کاملRitz Method Application to Bending, Buckling and Vibration Analyses of Timoshenko Beams via Nonlocal Elasticity
Bending, buckling and vibration behaviors of nonlocal Timoshenko beams are investigated in this research using a variational approach. At first, the governing equations of the nonlocal Timoshenko beams are obtained, and then the weak form of these equations is outlined in this paper. The Ritz technique is selected to investigate the behavior of nonlocal beams with arbitrary boundary conditions ...
متن کاملA New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation
In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...
متن کاملCrack Detection of Timoshenko Beams Using Vibration Behavior and Neural Network
Abstract: In this research, at first, the natural frequencies of a cracked beam are obtained analytically, then, location and depth of a crack in beam is identified by neural network method. The research is applied on a beam with an open crack for three different boundary conditions. For this purpose, at first, the natural frequencies of the cracked beam are obtained analytically, to get the ex...
متن کاملTransverse Vibration for Non-uniform Timoshenko Nano-beams
In this paper, Eringen’s nonlocal elasticity and Timoshenko beam theories are implemented to analyze the bending vibration for non-uniform nano-beams. The governing equations and the boundary conditions are derived using Hamilton’s principle. A Generalized Differential Quadrature Method (GDQM) is utilized for solving the governing equations of non-uniform Timoshenko nano-beam for pinned-pinned...
متن کامل